Kako slepi miševi prepoznaju prijatelje u mraku?

Prema novom istraživanju, slepi miševi uz pomoć zvuka raspoznaju svoje prijatelje u mraku.

Najnovije istraživanje pokazalo je da slepi miševi mogu da prepoznaju jedni druge u mraku uz pomoć vlastitog zvuka.

Najnovije istraživanje pokazalo je da slepi miševi mogu da prepoznaju jedni druge u mraku uz pomoć vlastitog zvuka.

Slepi miševi su društvene životinje koje razvijaju prijateljstva. Oni takođe moraju da komuniciraju kao piloti borbenih aviona – brzo, tečno i u kratkim formama – kako se ne bi sudarali dok love plen. Pored toga, moraju da sele svoje društvene grupe u mraku. Kombinacija svih ovih atributa navela je naučnike da se zapitaju da li slepi miševi, kao i ljudi, mogu da preoznaju bliske društvene kontakte uz pomoć zvuka koji proizvode oni sami.

Hana Kastejn (Hanna Kastein) sa Veterinarskog univerziteta u Hanoveru, Nemačkoj (University of Veterinary Medicine Hannover, Germany), zajedno sa svojim kolegama, započela je istraživanje „vampirskih slepih miševa“ (Megaderma lyra), i primetila je da oni prave male individualne kontakte uz pomoć delova tela – kao što prijatelji tapšu jedan drugog po ramenu. Naučnici su želeli da otkriju da li ovi slepi miševi takođe mogu da prepoznaju jedan drugog uz pomoć glasa, i da li im to omogućava da se međusobno raspoznaju u mraku.

Naučnici su uzeli dve grupe slepih miševa i stavili ih u dve zasebne sobe gde su oni mogli da lete i držali su ih tu dva meseca. Obeležili su one slepe miševe koji su bili u učestalom kontaktu sa drugim slepim miševima, a kasnije odvojeni od grupe na četiri sata, kako bi se videlo da li će dozivati jedni druge. Naučnici su prepoznali zvukove koje su ispuštale ove životinje i snimili su ih kako bi kasnije mogli da ih puštaju drugim izolovanim slepim miševima.

Kastejn i njene kolege su otkrile da su se svi izolovani slepi miševi okretali prema zvučnicima koji su ispuštali zvukove slepih miševa u čežnji da pronađu svoje prijatelje. Onda je tim napravio vežbu privikavanja, gde bi neprestano ponavljali zvukove jednog slepog miša, sve dok testirani slepi miševi ne bi počeli da ignorišu taj zvuk. Posle toga su puštali različite grupe zvukova drugih slepih miševa. Životinje su više odgovarale na zvuk od svog postojećeg prijatelja slepog miša koji je deo njihove društvene grupe, nego na zvuk slepog miša iz vežbe privikavanja.

Ovo je važno jer implicira na to da su slepi miševi primetili nešto oko zvukova koji je izgleda jedinstven za svakog individualca. Pravili su razliku između novih i starih slepih miševa, kao i novog zvuka koji su ispuštali stari slepi miševi.

“Slepi miševi su prvi sisari gde je ovakav vid raspoznavanja i vezivanja utvrđen. Ovakva veza može biti prikladna sisarima generalno”, naučnici su izjavili.

Prošle godine, neki drugi nemački naučnici istraživali su eholokativne pozive slepih miševa, koje ljudi nisu sposobni da čuju, a smatraju da svaki nosi detaljne informacije o individualcu. Ovaj vokalni potpis pomaže muškim slepim miševima da izbegnu rivale i pomaže ženkama da nađu svoje partnere. Kao i za ljude, tako i za slepe miševe, sposobnost pronalaženja bliske osobe u gužvi može biti veoma koristna.

Prvi biološki dokaz supernove

Cassiopeia A - ostaci supernove koja se dogodila u sazvežđu Kasioperia, udaljena oko 11.000 svetlosnih godina. Procenjuje se da se eksplozija dogodila pre 330 godina.

Cassiopeia A – ostaci supernove koja se dogodila u sazvežđu Kasioperia, udaljena oko 11.000 svetlosnih godina. Procenjuje se da se eksplozija dogodila pre 330 godina.

U fosilnim ostacima bakterija nađenih u gvožđu, naučnici sa Tehničkog univerziteta u Minhenu, smer Skup odlika porekla i strukture univerzuma (Cluster of Excellence Origin and Structure of the Universe, Technische Universitaet Muenchen – TUM), pronašli su radioaktivni izotop gvožđa, koji datira još iz vremena supernove u našem komsičkom komšiluku. Ovo je prvi biološki dokaz takve supernove na našoj planeti. Određivanjem starosti duboke bušotine Pacifičkog okeana, utvrđeno je da se supernova dogodila pre 2.2 miliona godina, što je otprilike vreme kada se pojavljuje današnji čovek.

Većina hemijskih elemenata poseduje svoje poreklo u jezgru pucanja ove supernove. Kada zvezda završi život velikom eksplozijom, ona odbacuje svoju masu u svemir. Radioaktivni izotop gvožđa Fe-60 ekskluzivno je nastao u ovakvom prasku. Zbog toga što se njegova starost procenjuje na 2.62 miliona godina, nemoguće je da se prasak dogodio u našem Solarnom sistemu i ne bismo trebali da pronađemo gvožđe koje vodi poreklo iz supernove na našoj planeti. Dakle, svako pronalaženje Fe-60 implicira da se prasak dogodio u našem kosmičkom komšiluku. U 2004. godini, naučnici sa TUM su po prvi put pronašli Fe-60 na našoj planeti. Bio je u feromanganskoj kori prikupljen sa dna ekvatorijalnog pacfičkog okeana. Procenjuje se da je star oko 2.2 miliona godina.

Takozvane „magnetotaktične“ bakterije žive u sedimentima naših okeana. One, unutar svojih ćelija prave na hiljade sitnih kristala magnetita (Fe3O4), svaki u proseku 80 nanometara prečnika. Magnetotaktičke bakterije sakupljaju gvožđe sa atmosferske prašine koja pada na okean. Nuklearni astrofizičar Šon Bišop (Shawn Bishop) sa TUM predpostavlja da bi Fe-60 takođe trebao biti deo ovih kristala nastalih od magnetotaktičnih bakterija koje su postojale u vremenu interakcije praska sa našom planetom. Ovi kristali nastali od bakterija kada se pronađu u sedimentima dugo nakon smrti bakterije nazivaju se „magnetofosili“.

Narukvica od kristala magnetita nastalih od magnetotaktičnih bakterija.  Cena jednog grama ovog kristala iznosi 6.5 američkih dolara.

Narukvica od kristala magnetita nastalih od magnetotaktičnih bakterija.
Cena jednog grama ovog kristala iznosi 6.5 američkih dolara.

Bišop i njegove kolege analizirali su delove kore sedimenata Pacifika sakupljanih u programu bušenja okeana (Ocean Drilling Program). Sedimenti datiraju između 1.7 i 3.3 miliona godina. Bišop je zajedno sa svojim kolegama sakupio sedimente koji korespondiraju u intervalima od oko 100.000 godina i tretirali su ih hemijskim reakcijama kako bi selektivno izolovali magnetofosile – i tako sakupili što je moguće više Fe-60.

Konačno, korišćenjem ultra osetljivog spektrometarskog sistema za ubrzanje mase pri Maier Laibnic laboratoriji u Garčingu – Minhen, pronašli su trag Fe-60 koji datira od pre 2.2 miliona godina, što se poklapa sa očekivanim vremenom iz istraživanja feromangana. „Deluje razumno da pretpostavimo da su nagoveštaji Fe-60 zapravo ostaci lanaca magnetita formiranih od strane bakterije na dnu okeana koje je prasak „tuširao“ iz atmosfere“, izjavio je Bišop. On i njegov tim trenutno se spremaju da analiziraju drugo bušenje sedimenata iz kore, koje sadrži deset puta više materijala od prvog bušenja. Oni hoće da vide da li sedimenti i iz drugog bušenja sadrže Fe-60, i ako je odgovor da, onda bi hteli da naprave mapu u funkciji vremena.

Avion na solarni pogon

Početkom maja, avion je preleteo Sjedinjene Američke Države pomoću sunčeve energije. U 2015. godini procenjuje se da će preleteti svet.

Tokom 2011. godine avion na solarni pogon je leteo preko Švajcarske

Tokom 2011. godine avion na solarni pogon je leteo preko Švajcarske

Dvadeset prvog marta 1999. godine, ujutru, Bertrand Pikard (Betrand Piccard) i Brajan Džouns (Brian Jones), prizemljili su njihov balon u egipatskoj pustinji, i tako su kompletirali prvi let oko sveta bez stajanja. Tokom slavlja, Pikard je konstatovao: Rezervoari sa propanom koji su bili neophodni da bi se balon održavao u vazduhu su bili skoro prazni. “Da su vetrovi bili malo slabiji preko Atlantika, završio bih u nekom jarku”, dodao je. Pikard je tada obećao da će pronaći način da preleti svet bez trunke goriva.

Početkom maja, Pikard i njegov partner su, koristeći avion na solarni pogon, leteli od San Franciska do Njujorka – kao uvod za planirani let 2015. koji podrazumeva put oko celog sveta. Kada je prvi put rekao svima za njegov san, svi su mislili da je lud. Iako su pioniri kao što je Pol Mek Kridi (Paul MacCready), pravili avione na solarni pogon još od 70-ih godina, ni jedan nije mogao da leti nakon što sunce zađe, a kamoli da lete danima preko Atlantika i Pacifika.

Prepreka je bila težina. Da bi leteo tokom noći, avion mora da crpi snagu iz baterija koje se pune danju. Ali baterije su sadržale mnogo manje energije po kilogramu nego rezervoar sa gorivom. Što  znači da avion mora da nosi veće baterije kako bi skladištio veću količinu energije, što je dalje značilo da bi avion bio još teži i tako zahtevao još više energije za letenje. Kada na to dodate kabinu i pilota, avion postaje pretežak i za samo uzletanje. Zbog toga su se istraživači letelica na solarni pogon fokusirali na bespilotne letelice, kao što su „heliosi sa letećim krilima“ agencije NASA.

Bertrand Pikard 2012. godine nakon letenja preko Mediterana u solarnom avionu

Bertrand Pikard 2012. godine nakon letenja preko Mediterana u solarnom avionu

Pikard, švajcarski fizioterapeut i pilot, dolazi iz porodice avanturista koji nisu skloni odustajanju: 1960. njegov otac Žakez (Jacques), prvi je putovao do okeanove najdublje tačke, 1931. njegov deda Avgust (Auguste) bio je prvi pilot koji je balonom došao do stratosfere. Pikard je nastavio da promoviše njegov koncept letenja uz pomoć solarne energije, i tako mu je Švajcarski federalni institut za tehnologiju u Luzanu (Lausanne EPFL) omogućio 2003. godine da započne istraživanja. Oni su zaključili da bi ultra laki avion sa širokim rasponom krila mogao da smanji otpor vazduha i uz pomoć solarne energije poleti. Andre Boršberg (André Borschberg), pilot i inženjer koji je vodio EPFL istraživanje, pridružio se Pikardu kako bi zvanično pronašli Solarni impuls. Tako su njih dvojica počeli da regrutuju ljude i donatore za 10-ogodišnji projekat vredan 130 miliona dolara.

Oni su odmah naleteli na probleme. Nisu mogli da nađu nikoga ko bi im napravio avion. Svi su mislili da je nemoguće, tako da su Pikard i Boršberg okupili svoj tim inženjera. “Mislim da imamo više ljudi izvan sveta avijacije nego onih kojih su zapravo za to specijalizovani”, izjavio je Boršberg. Glavni na razvoju aviona, Robert Fraefel, vodi poreklo iz Formula 1 trkanja. Ostali dolaze iz industrija kao što su fotonaponska proizvodnja i izlivanje metala.”U neku ruku, imali smo veliku prednost jer smo imali mnogo neiskusnih ljudi. Kada ste iskusni, stalno se vraćate rešenjima koje već znate”, izjavio je Boršberg.

Tim je odlučio da ram i krila napravi kompletno od karbonskih vlakana (proizvedeno od kompanije koja pravi jahte), koji se spajaju visoko obrađenom plastičnim šrafovima i zavrtnjima. Materijali su lagani, ali ipak dovoljno jaki da omoguće raspon krila od 63 metra (skoro identično kao kod Erbas aviona A340-500). Avion je težio nešto malo preko 1500 kilograma, što je manje od 1% težine Erbasa.

Kako bi pokrenuli avion, inženjeri su obložili sa skoro 12.000 silikonskih solarnih ćelija glavno krilo i horizontalni stabilizator. Ćelije su proizvodile u proseku 50 kilovati tokom 24 časa, šaljući energiju direktno u motor kada je avion u vazduhu i usmeravajući svaki višak do četiri litijum-polimerne baterije.

Krilo solarnog aviona, izgrađeno od karbonskih vlakana

Krilo solarnog aviona, izgrađeno od karbonskih vlakana

Nakon četiri godine dizajniranja i 2 pravljenja, avion je načinio svoje prve korake – letenjem 350 metara na aerodromu u Dubendorfu, Švajcarskoj, krajem 2009. godine. Pravi test desio se u julu 2010. godine kada je Boršberg leteo avionom noću po prvi put preko Pajerne, Švajcarska. ”Nismo znali kako će tačno avion da se ponaša”, dodao je. “Da li ćemo potrošiti više energije nego što smo planirali? Da li ćemo se susreti sa silaznom strujom?” Bez autopilota, leteo je u sedećoj poziciji 26 sati bez prestanka, koristeći joga tehnike da se istegne u skučenoj kabini. Kada je sleteo, oborio je tri rekorda, uključujući postignutu najvišu tačku letenja avionom na solarni pogon koja je iznosila 9.150 metara, kao i najduži solarni let od 26 sati, 10 minuta i 19 sekundi.

Prototip aviona dokazao je da je koncept koji je tim prolongirao važeći – ali i dalje ne mogu da lete oko sveta. Pošto je brzina solarnog aviona koji su osmislili iznosila 100 kilometara po času, Pikard procenjuje da bi bila potrebna 3 dana letenja bez prestanka da bi se preleteo Atlantski okean i 5 do 6 za Pacifički. To zahteva složeniji sistem sa većim kokpitom koji bi omogućavao pilotu da prespava; veću efikasnost za skladištenje više energije u rezervama; kao i nepromočivu elektroniku koja bi omogućavala letenje u vlažnim uslovima. Tako da je Solarno impulsni tim sada na pola puta. “Prvi avion imao je tehnologiju iz 2007. godine. Drgi će imati tehnologiju budućnosti”, dodao je Pikard.

Solarni avion se ubacuje u Boing 747. Inženjeri će ga sastaviti kada sleti u San Francisko radi leta između San Franciska i Njujorka.

Solarni avion se ubacuje u Boing 747. Inženjeri će ga sastaviti kada sleti u San Francisko radi leta između San Franciska i Njujorka.

HB-SIB, avion budučnosti, će biti 11% veći, imaće autopilota, motore sa većom efikasnošću, i kostur napravljen od još lakših karbonskih vlakana. Baterije će imati veću gustinu energije zahvaljujući novim elektrolitima i elektrodama razvijenim od strane Solvaj i Bajer istraživačkog tima posvećenog razvoju novih materijala (Solvay and Bayer MaterialScience) – tehnologiji koja je već rasprostranjena u električnim vozilima i tehnici. Dve kompanije već su razvile čvrstu poliuretansku penu sa visokim performansama za krila aviona i kokpit izolaciju koju Bajer trenutno koristi u frižiderima i građevinskoj industriji.

Pikard je zadovoljan jer njegovi projekti podstiču razvijanje tehnologija koje mogu unaprediti i druge industrije, ali takođe se nada da će Solarni impuls podstaći potragu za obnovljivom energijom. “Vrlo često se dešava da dok pričamo o zaštiti sredine, to postane dosadno”, izjavio je Pikard. “Sve se svodi na manje pokretljivosti, manje konforta, manje razvoja”. Nasuprot tome, on se nada da će dokazati da eksploatisanje sunčeve energije može da nam donese i veću slobodu.

Konstrukcija aviona na solarnu energiju

Konstrukcija aviona na solarnu energiju

1) Struktura

Inženjeri su napravili kostur aviona ultra lakim, spajanjem delova od karbonskih vlakana u grede i jarbol. Laka i čvrsta pena formira krila i izoluje gondolu od kokpita.

2) Krila

Tanka i dugačka krila prostiru se 63 metra. Dužina smanjuje otpor, povećavajući tako aerodinamiku, i  uisto vreme omogućava prostor za 10.748 solarnih ćelija.

3) Solarne ćelije

Napravljene od nanokristalnog silikona, debele svega 150 mikrona, solarne ćelije prekrivaju 200 kvadratnih metara. One pretvaraju sunčevu svetlost u eliktricitet sa koeficijenotm efikasnosti od 22%.

4) Instrumenti

Zbog raspona krila i male brzine – 100 kilometara po času, avion može da se nagne za samo 5 stepeni, mnogo manje od konvencionalnog aviona. Omega instumenti sa tačnošću mere ugao nagimanja i tresu kontrolni točak ako se pilot nagne previše jako.

5) Kokpit

Samo jedan pilot staje u kokpit, i mora da bude u sedećem položaju. On kontroliše avion uz pomoć džoistika, kormila i 4 poluge.

6) Gondole

Svaka od četiri gondole, ili odvojene motorske konzole, staju ispod krila, sadržeći pakovanje baterija, motor od 10 konjskih snaga i kutiju sa opremom koja pokreće propeler na 400 rpm. Raspodeljujući težinu baterija, gondole takođe smanjuju opterećenje aviona.

7) Baterije

Sa nešto više od 360 kilograma, litijum-polimerske baterije čine četvrtinu ukupne težine aviona. Veoma su efikasne, skladište oko 109 wati po satu.

Putanja leta

Putanja leta

Putanja leta:

Tokom dana, solarni avion se penje između 8220 i 8530 metara nadmorske visine. Kada sunce zađe, propeleri se priguše kako bi se energija sačuvala, i avion se polako spušta na 1200 metara. On ostaje na toj visini sve dok sunce ne izađe ponovo i baterije krenu da se pune. Tim meteorologa koristeći simulacije, procenjuje kada je najbolje doba dana da se avion penje, uzimajući u obzir oblačnost i vetrove.

Uskoro: lek za sedu kosu

Reklama za farbanje kose iz 1843. godine. Dokaz koliko je ljudima i tada bilo bitno da nemaju sedu kosu.

Reklama za farbanje kose iz 1843. godine. Dokaz koliko je ljudima i tada bilo bitno da nemaju sedu kosu.

Naučnici trenutno rade na kremi koja obnavlja pigment kod ljudi koji imaju kožno oboljenje zvano vitiligo. Teoretski, oni nagađaju da bi krema mogla da pomogne ljudima koji imaju problema sa sedom kosom.

Istraživači rade na tome da pomognu ljudima koji imaju problema sa sedama, da ih zamene za njihovu mladalačku boju ponovo. Do sada, imali su uspeha kod par ljudi koji nisu izgubili pigment u kosi i koži od starenja, već od bolesti vitiligo. Pošto se smatra da je gubitak pigmenta od vitiligo bolesti isti kao i gubitak sedenjem u kasnim godinama, prototip ovakve kreme mogao bi biti prvi korak ka pravoj kremi koja će sprečiti sedenje. (Ali šta bismo radili bez silnih „muških“ reklama?)

Krema je odradila svoje kod samo pet ljudi u preliminarnom ispitivanju, tako da smo daleko od pravljenja komercijalnog proizvoda. Ali ako se ispostavi da pomaže većem broju ljudi, bila bi to velika stvar za ljude koji pate od vitiligo bolesti, posebno kod onih koji se pate ceo život. Što se tiče „sede“ populacije, bio bi to prvi proizvod koji se zapravo bavi korenom problema, umesto što samo prikriva sede dlake“, izjavio je  Džerald Vajzmen (Gerald Weissmann), glavni urednik novina ujedinjenog američkog društva za eksperimentalnu biologiju „FASEB novine“.

Tim dermatologa iz Nemačke i Engleske pregledao je više od 2.000 ljudi koji pate od vitiligo bolesti, koja izaziva gubitak pigmenta u pojedinim predelima kože i kose. Iako, vitiligo nije smrtonosan, zarazan niti bolan, i dalje može poprilično otežati ljudima život jer može izmeniti čovečiji izgled veoma mnogo.

Ovo oboljenje poznato je još od davnih vremena. Oboleli od vitiligo bolesti čine 0,5 – 4% stanovništva Zemljine kugle (što odgovara broju od 40 miliona ljudi). Bolest se može pojaviti u bilo kojoj starosnoj dobi, mada se u 70% slučajeva javlja do 20-e godine života.

Bolest vitiligo - gubitak pigmenta u koži i kosi.

Bolest vitiligo – gubitak pigmenta u koži i kosi.

Evropski naučnici pronašli su neke promene u proteinima koji vitiligo oboleli prave, nasuprot onima koji nisu oboleli od ove bolesti. Takođe su otkrili da nekoliko različitih hemikalija akumulira u vitiligo zaraženoj koži: peroksinitrit i hidrogen peroksid (iste stvari koje se koriste u izbeljivačima). Naučnici su imali pet dobrovoljaca obolelih od vitiligo bolesti, koji su koristili kremu koja smanjuje hidrogen peroksid u koži. Oni su spoznali da je krema povratila pigment u koži dobrovoljaca.

Da li bi odstranjivanje hidrogen peroksida sa kože i kose radilo i kod osoba koje nisu oboleli od vitiligo bolesti? U 2009. godini, naučnici su objavili studiju koja sugeriše na to da ljudi starenjem dobijaju sedu boju i da zbog toga imaju povišenu količinu hidrogen peroksida u folikuli i dlaci.

Naučnici iskoristili 3D štampanje kako bi napravili prvo veštačko uvo

Naučnici su iskoristili tehnologiju 3D štampanja kako bi napravili prvo veštalko uvo, sposobno da prima radio talase.

Naučnici su iskoristili tehnologiju 3D štampanja kako bi napravili prvo veštalko uvo, sposobno da prima radio talase.

Primarni cilj istraživača je bio da se istraže efikasna i promenljiva sredstva kod spajanja elektronike i tkiva. Naučnici su koristili 3D štampanje ćelija i nanodelova, praćeno ćelijskim razvijanjem, kako bi razvili malu kolutastu antenu sa hrskavicom. I tako je nastalo veštačko uvo.

“Generalno, postoje mehaničke i toplotne prepreke kada spajate električne materijale sa biološkim”, izjavio je Majkl Mekalpin (Michael McAlpine), asistent za mehaničko i aero-kosmičko inženjerstvo na Prinston univerzitetu. “Prethodno, naučnici su predložili pojedine strategije da se sašiju elektronički delovi kako bi spajanje bilo manje čudno. To se obično dešava između 2D ploče elektroničkih delova i podloge od tkiva. Ipak, naš posao je zahtevao drugačiji pristup – da napravimo i razvijemo biologiju zajedno sa elektronikom sinergetski i u 3D preplitajućem formatu”.

Mekalpinov tim je napravio nekoliko podstreka, prethodnih godina istraživanja, spajanjem malih senzora i antena. Prošle godine, istraživanje vođeno Mekalpinom i Naven Vermom (Naveen Verma), asistentom za elektroinženjerstvo, uz pomoć Fio Omeneta (Fio Omenetto) sa Tufts univerziteta, rezultiralo je razvojem tetovaže napravljene od bioloških senzora i antene koji se mogu prikačiti na površinu zuba. Ovaj projekat je njihov prvi napor da naprave potpuno funkcionalan organ koji ne samo da replikuje ljudske sposobnosti, već ih unapređuje koristeći ugrađenu elektroniku.

Tetovaža napravljena od bioloških senzora i antena koja se stavlja na zub. Delo naučnika sa Tufts univerziteta.

Tetovaža napravljena od bioloških senzora i antena koja se stavlja na zub. Delo naučnika sa Tufts univerziteta.

“Dizajn i implementacija bioloških organa i uređaja koji unapređuju ljudske sposobnosti, poznati kao cybernetics, deo su nauke koja sve više privlači pažnju naučnicima”, istraživači su napisali u članku koji se pojavljuje u školskom časopisu Nano Letters. “Ovo područije ima potencijal da generiše kastumizirane replike delova za ljudsko telo, ili čak da napravi organe koji imaju sposobnost izvan ljudskih mogućnosti”. Standardna istraživanja tkiva uključuju “sejanje” ljudskih ćelija, kao što su ćelije koje formiraju ušnu hrskavicu, i posle izgradnju polimerskog materijala koji se zove hidrogel. Međutim, naučnici tvrde da ova tehnika ima problema kod zamenjivanja komplikovanih trodimenzionalnih bioloških struktura. “Rekonstrukcija uveta ostaje jedan od najproblematičnijih plastičnih operacija”, izjavili su. Kako bi se rešio problem, tim se okrenuo proizvodnji, tačnije 3D štampanju. Ovi štampači koriste kompjuterizovan dizajn kako bi zamislili objekte od nizova tankih kriški. Štampač onda skladišti naslage različitih materijala, počev od plastičnih ćelija, kako bi napravio finalni proizvod. Predlagački kažu da ovakva proizvodnja obećava pravu revoluciju domaće industrije, dopuštajući malim timovima ili pojedincima, da naprave proizvod za koji bi prethodne bile neophodne čitave fabrike.

Praveći organe uz pomoć 3D štampača je skori napredak. Nekoliko grupa izjavilo je da su koristili ovakvu tehnologiju za sličnu upotrebu u proteklih par meseci. Ali ovo je prvi put da su naučnici demonstrirali da je 3D tehnologija pogodna strategija za mešanje tkiva i elektronike. Tehnika je omogućila naučnicima da pomešaju električnu antenu sa tkivom unutar veoma kompleksno građenog ljudskog uveta. Oni su prvo upotrebili 3D štampač da kombinuju kalup od hidrogela i kožnih ćelija zajedno sa srebrnim nanodelovima antene. Kožne ćelije su se kasnije razvile u hrskavicu.

3D štampač koji se koristi za izradu gotovih proizvoda.

3D štampač koji se koristi za izradu gotovih proizvoda.

Manu Manor (Manu Mannoor), diplomirani student u Mekalpinoj laboratoriji, rekao je da ovakav vid proizvodnje otvara vrata novim načinima da mislimo o integraciji električnih delova i biloških tkiva, i otvara mogućnost da napravimo pravi biološki organ koji će funkcionisati. On je dodao da je moguće integrisati senzore različitih bioloških tkiva kako bi se, na primer, pratio napon u pacijentovom menikusu. Dejvid Garsias (David Garcias), profesor kod Johns Hopkins univerziteta, izjavio je da premošćavanje jaza između biologije i elektronike, predstavlja znatan izazov koji moramo savladati kako bismo omogućili stvaranje pametnih proteza i implanata. “Biološke strukture su mekane I gnjecav, napravljene većinom od vode i organskih molekula, dok konvencionalni električni delovi su teški i suvi, napravljeni većinom od metala, poluprovodnika i neorganskih delova. Razlike u fizičkom i hemijskom sastavu ove dve vrste materijala ne bi mogle biti izraženije”, dodao je.

Gotovo uvo napravljeno je od navojne antene unutar hrskavične strukture. Dve žice, vode se od baze uveta i navijaju oko spiralnog puža (kohlea) – dela uveta koji ima ulogu da prepozna zvuk, koji može da se spoji sa elektrodama. Iako Mekalpin upozorava da bi trebalo proširiti testiranje pre nego što se tehnologija iskoristi na pacijentu, Garsias kaže da ovaj proizvod u principu može odmah da se iskoristi za zamenu ili unapređenje ljudskog sluha. On je dodao da električni signali proizvedeni od strane uveta mogu da se spoje sa pacijentovim nervnim završetcima. Trenutni sistem prima radio talase, ali on je rekao da istraživački tim planira da doda i druge materijale, kao na primer električne senzore osetljive na pritisak, koji bi omogućili uvetu da registruje akustične zvukove.

Pored Mekalpina, Verma, Manora i Garcijasa, istraživački tim je obuhvatao i: Vinstona Sobahejo (Winston Sobayejo), profesora na mehaničkom i aero-kosmičkom inženjerstvu na Prinstonu, Karen Malatesta, studenta molekularne biologije na Prinstonu, Jong Lin Konga (Yong Lin Kong), diplomiranog studenta na mehaničkom i aero-kosmičkom inđenjerstvu na Prinstonu i Tinu James (Teena James), diplomirani student na hemijskom i biomolekularnom inženjerstvu na John Hopkins.

Tim je takođe imao i Ziven Jianga (Ziwen Jiang), srednjoškolca iz Pedi škole u Hajctaunu (Peddie School in Hightstown), koji je bio deo naprednog programa za mlade istraživače Mekalpine laboratorije.
Ziven Jiang je jedan od najspektakularnijih srednjoškolaca koga sam ikada video”, izjavio je Mekalpin. “Ovaj projekat ne bismo uspeli da završimo da nije bilo njega, naročito njegovog znanja u CAD dizajniranju biološkog uveta”.